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Abstract—Easily accessible N-acyl-2-triphenylphosphonioglycinate tetrafluoroborates react smoothly with trimethylphosphite in
the presence of methyltriphenylphosphonium iodide to give N-acyl-2-(dimethoxyphosphoryl)glycinates in good or very good yields.
The dimethoxyphosphorylglycinates may be isolated by column chromatography, or used directly for the Wadsworth–Emmons syn-
thesis of a,b-dehydro-a-amino acids in a one-pot procedure without purification.
� 2006 Elsevier Ltd. All rights reserved.
N-Acyl-2-(dialkoxyphosphoryl)glycinates (DAPGs) 1
have been attracting significant attention from organic
chemists since 1973, when they were employed by
Ratcliffe and Christensen in the synthesis of cephalospo-
rins.1 Since then, they have been used as key building
blocks for the construction of fused b-lactam rings in
total syntheses of various important b-lactam antibio-
tics,1,2 for example, derivatives of cephalosporic acid,1,3

2-carbapenemic acid4 and 1-carbocephalotin.5 However,
the widest application of DAPGs 1 is their use in the
Wadsworth–Emmons synthesis of a,b-dehydro-a-amino
acids 8. The latter compounds are common components
of naturally occurring peptides.6 In addition, their
hydrogenation using Wilkinson-type chiral catalysts is
considered to be one of the most general methods for
the enantioselective synthesis of a-amino acids,6,7

including non-proteinogenic a-amino acids of high bio-
logical activity.8

All the important methods for the synthesis of DAPGs 1
have been summarised by Ferris et al.9 Many are poor in
their yield or are not suitable for large scale synthesis,
because they include hazardous reagents such as
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O-mesitylenesulfonylhydroxylamine,3 chloramine,10 tosyl
azide or diazo compounds.9,10 As a result, the multi-step
synthesis described by Schmidt et al. (Scheme 1)11 is the
most frequently used method for the preparation of
DAPGs 1.

Schmidt’s method gives directly only N-benzyloxy-
carbonyl-2-(dialkoxyphosphoryl)glycinate; the synthesis
of derivatives with other N-protecting groups requires
a laborious hydrogenolysis of the benzyloxycarbonyl
group and re-acylation of the amino group, this is the
main drawback of the method.

A few years ago, we described a simple and effective
synthesis of N-acyl-2-triphenylphosphonioglycinates
(TPPGs) 5 from easily accessible 4-triphenylphosphor-
anylidene-5(4H)-oxazolones 3 (Scheme 2, Procedure
A).12 The compounds obtained were crystalline and
quite stable, the procedure being useful for the synthesis
of TPPGs 5 even on a kilogram scale. Recently, we
described another complementary synthesis of TPPGs
5, which involves a new kind of Mitsunobu alkylation
of triphenylphosphine with 2-hydroxyglycinate 4
(Scheme 2, Procedure B).13 We also demonstrated that
TPPGs 5 react with aldehydes via the Wittig reaction
to give the corresponding a,b-dehydro-a-amino acid
derivatives 8; they do not react, however, with ketones.14

In the present letter, we report an easy method for the
transformation of TPPGs 5 into the much more reactive
DAPGs 1.
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Our first attempt to carry out the reaction of N-pivaloyl-
2-triphenylphosphonioglycinate iodide (5, R = t-Bu,
X = I) with trimethylphosphite in methylene chloride
gave only a moderate yield of the expected N-pivaloyl-
2-(dimethoxyphosphoryl)glycinate (57%) in a mixture
with N-pivaloyl-2-(hydroxymethoxyphosphoryl)glycin-
ate derivative 6 (43%, Scheme 3). The formation of the
latter compound may be rationalised as a result of the
reversible demethylation of N-pivaloyl-2-(dimethoxy-
phosphoryl)glycinate with iodide.

In order to restrain the undesired demethylation
reaction we used easily accessible N-acyl-2-triphenyl-
phosphonioglycinate tetrafluoroborates (5, X = BF4)
instead of the iodides in further experiments. However,
iodide anions were necessary in this reaction, to trans-
form the primarily formed trimethoxyphosphonium salt
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into the phosphonate via the Michaelis–Arbuzov rear-
rangement. As demonstrated, the application of a sub-
stoichiometric amount of iodide anions in the form of
methyltriphenylphosphonium iodide (0.25 mol per
1 mol of TPPG 5) allows N-pivaloyl-2-triphenyl-
phosphonioglycinate tetrafluoroborate (5, R = t-Bu,
X = BF4) to be transformed into the corresponding
DAPG 1 in 84% yield, whereas the yield of the demeth-
ylation product was reduced to about 16%. Further
improvement in the yields of DAPG 1 was achieved
by adding methyl iodide to the reaction mixture, which
also diminished the yield of the demethylation reaction
product 6 to no more than a few percent.

The optimised procedure for synthesizing DAPGs 1 is
very simple and convenient, and consists of heating
the solution of TPPG tetrafluoroborate 5, tri-
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Table 1. Synthesis of DAPGs 1 and their reaction with carbonyl compounds

TPPGs 5 DAPGs 1 N-Acyl-a,b-dehydro-a-amino acid esters 8 Ref.e

No. R Procedure No. Yield (%) Mp (�C) No. R1 R2 Yield (%) Mp (�C)

5c Me A 1c 88a 88.0–88.5 16
5d t-Bu A 1d 91a 74.0–75.0 —
5e Ph A 1e 85a 111.5–112.5 17
5f MeO B 1f 51b — 17
5g t-BuO B 1g 51b 60.5–61.5 18
5a BnO B 1a 76b 77.5–78.0 16
5c Me A — — — 8c H 2-Quinolyl 87a,c 106.0–107.0 14
5d t-Bu A — — — 8d Me Me 71a 91.0–93.0 —
5a BnO B — — — 8a H Et 70b,d Oil 11

a Based on phosphonium salt 5.
b Based on 2-hydroxyglycinate 4.
c Z-Isomer.
d A mixture of Z- and E-isomers in the ratio of 13:1.
e References on the physical and spectroscopic properties of products.
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methylphosphite and a substoichiometric amount of
methyltriphenylphosphonium iodide in methylene chlo-
ride in a sealed ampoule at 45 �C for 8 h, followed by
adding methyl iodide and leaving the reaction mixture
for 24 h at room temperature.

In the case of simple N-acyl-2-triphenylphosphonio-
glycinates (5, R = Me, t-Bu, Ph) we used pure, crystal-
line starting compounds, which were easily accessible
from 4-phosphoranylidene-5(4H)-oxazolones 3, and we
obtained the expected DAPGs 1 in high yields
(85–91%).� Unfortunately, N-alkoxycarbonyl-2-tri-
phenylphosphonioglycinates could not be obtained
in a similar way, because of the instability of the
corresponding 2-alkoxy-5(4H)-oxazolones.15 In this
case, we prepared the starting N-alkoxycarbonyl-2-tri-
phenylphosphonioglycinates (5, R = MeO, t-BuO,
BnO) in situ, applying the Mitsunobu alkylation of
triphenylphosphine with N-alkoxycarbonyl-2-hydroxy-
glycinate 4 (Scheme 2)13 and, eventually, obtained the
corresponding DAPGs 1 in good yields (51–76% based
on 2-hydroxyglycinates).�
�Procedure I: To a solution of TPPG tetrafluoroborate 5 (1 mmol) and
methyltriphenylphosphonium iodide (0.10 g, 0.25 mmol) in CH2Cl2
(1.6 cm3) a solution of trimethylphosphite (0.15 cm3, 1.25 mmol) in
CH2Cl2 (0.2 cm3) was added. The mixture was heated in a sealed
ampoule at 45 �C for 8 h, then left for 16 h at room temperature.
Methyl iodide (0.2 cm3, 3 mmol) was added and the mixture was left
for 24 h at room temperature. After evaporation of the solvent the
product was isolated from the residue by column chromatography on
silica gel eluting with a mixture of CH2Cl2 and methanol in the ratio
of 50:1 or 20:1.

� Procedure II: DEAD (0.2 cm3, 1.25 mmol), triphenylphosphine
(0.29 g, 1.1 mmol) and triphenylphosphonium tetrafluoroborate
(0.38 g, 1.1 mmol) were added to a stirred suspension of methyl N-
alkoxycarbonyl-2-hydroxyglycinate 4 (1 mmol) in THF (5 cm3) under
Ar at room temperature. The homogeneous mixture was left for
3 days at room temperature without stirring, and after evaporation of
THF, the residue containing N-alkoxycarbonyl-2-triphenylphospho-
nioglycinate tetrafluoroborate 5 was transformed into N-alkoxycar-
bonyl-2-(dimethoxyphosphoryl)glycinate as described in Procedure I
using, however, 0.24 cm3 (2 mmol) of trimethylphosphite.
The DAPGs obtained could be isolated from the reac-
tion mixture by column chromatography, or used
directly for the Wadsworth–Emmons synthesis of a,b-
dehydro-a-amino acids 8 with aldehydes or ketones in
the presence of DBU in a one-pot procedure without
isolation and purification§ (Table 1).

The structures of the DAPGs 1 as well as the Wads-
worth–Emmons reaction products 8 were confirmed by
comparison of their physical and spectroscopic proper-
ties (IR, 1H and 13C NMR) with the literature data;19,20

in the case of new compounds 1d and 8d, we also
obtained satisfactory elemental analyses results.21
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